
ENOLS ET ENOLATES

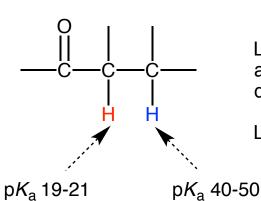

Énolate

Schéma général de la déprotonation d'un composé carbonylé

Énolate

stabilisation de l'anion par résonance

L'hydrogène en α (H) est anormalement acide car l'anion qui résulte de la déprotonation est très bien stabilisé!

L'hydrogène en β (H) n'est pas acide.

CH₃ CH₃ + Base
$$H_3$$
 C H_2 H_3 C H_3 CH₂ H_3 C H_4 H_3 C H_4 H_4 H_4 H_5 H_5 H_5 H_5 H_6 H_7 H_8 H

Les protons en position α du carbonyle sont "acides".

Problème

Identifiez les hydrogènes les plus acides dans chacune des molécules suivantes. Donnez la structure de l'ion énolate qui résulte de la déprotonation. a) acétaldéhyde, b) propanal, c) propanone, d) heptan-4-one, e) cyclopentanone.

Problème (solution)

Les énols et les énolates sont des nucléophiles qui peuvent réagir avec des électrophiles.

Un énol est moins nucléophile qu'un énolate car il ne contient pas de charge négative :

Les réactions en milieu acide se font via la forme énol alors que les réactions en milieu basique se passent via la forme énolate.

Tautomères céto et énol

très faible % de forme énol à l'équilibre

Préparation d'un énolate

Comportement ambident de l'énolate

tautomérisation

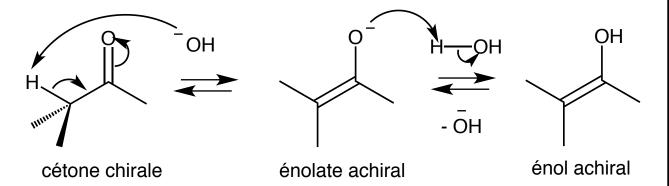
La nature de l'électrophile peut être très variable : un halogénure d'alkyle (*C*-alkylation), un proton (*O*-protonation).

Isomérisation

Isomérisation du dérivé cis en dérivé trans (plus stable) via la forme énolate.

Racémisation

Ph
$$CH_3$$
 CH_3 CH_3


conséquence : une solution d'un énantiomère pur (R ou S) dans un mélange EtO⁻/EtOH conduira au mélange racémique du composé

Ph
$$CH_3$$
 $EtO^ EtOH$ Ph CH_3 H_3C H_3C

molécule chirale sous forme d'un seul énantiomère molécule chirale en mélange racémique

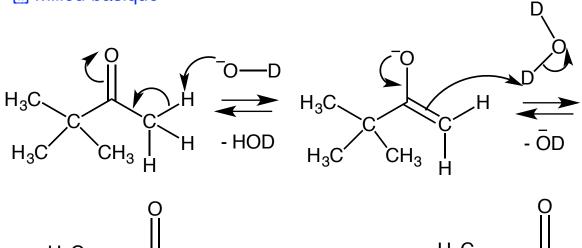
Mécanisme de l'isomérisation

Principe de l'isomérisation : on perd la chiralité via la formation d'un énol ou d'un énolate.

Réactions des énols et des énolates

1) Échange des H acides par des D (deutérium)

via énol (milieu acide)


via énolate (milieu basique)

Milieu acide

1) Échange des H acides par des D (deutérium) (suite)

$$H_3C$$
 CH_3
 CH_3

Milieu basique

H₃C CD₃

On répète cette séquence deux autres fois pour obtenir le produit

via énolate (milieu basique)

Problème 17.2 (S)

Problème 17.3 (S)

2) Halogénation

$$H_3C$$
 CH_3
 CH_3
 CH_3CO_2H
 CH_3
 CH_3CO_2H
 CH_3
 CH_3

via énol (milieu acide)

En milieu acide, la réaction s'arrête généralement à la mono-halogénation.

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3

33 % (+ 66 % de méthylcétone) via énolate (milieu basique)

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3

100 % via énolate (milieu basique)

En milieu basique, il est difficile de s'arrêter à la mono-halogénation.

2) Halogénation (suite)

Milieu acide

L'étape initiale de l'halogénation en milieu acide est l'énolisation. L'énolisation du dérivé mono-bromé par protonation du carbonyle sera plus difficile (à cause de l'effet électroattracteur du brome) que l'énolisation du produit de départ non bromé. Il y a donc un ralentissement de l'halogénation après que le premier halogène a été introduit. On s'arrête donc généralement à la mono-halogénation.

Exemple

$$\begin{array}{c|c} & & & & \\ \hline Br_2 & & & \\ \hline CH_3CO_2H & & & \\ \hline Br & & & \\ \hline 72\,\% & & \\ \end{array}$$

2) Halogénation (suite)

Milieu basique

$$H_3C$$
 CH_3
 H_4
 CH_3
 H_3C
 CH_3
 H_4
 CH_3
 H_4
 H_4

Hb est plus acide que Ha; l'énolate du produit mono-bromé va donc se former plus facilement que l'énolate du produit non-bromé. La poly-bromation va donc se produire avant que toute la méthylcétone ne soit convertie en produit mono-bromé (voir pourcentages)!

2) Halogénation (suite)

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3

via énolate (milieu basique)

Intérêt de ces trihalogénocétones?

Réaction à l'haloforme

$$H_3C$$
 CBr_3
 CBr_3
 CBr_3
 CBr_3
 CBr_3
 CBr_3
 CBr_3
 CBr_3
 CCC
 CH_3
 CCC
 CH_3
 CCC
 CH_3

Mécanisme

$$H_3C$$
 C
 CBr_3
 CBr_3

Réaction à l'haloforme (suite)

Illustration

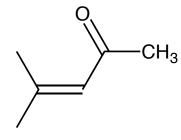
via CI₃

= Conversion d'une **méthyl**cétone en acide carboxylique (ΔC =-1).

Problèmes complémentaires

2)
$$CH_3 = \frac{1) Cl_2, OH^-, H_2O}{2) H_3O^+}$$

Réponses aux problèmes complémentaires


1)

1) Br₂, OH⁻, H₂O

ОН

via

2)

1) Cl₂, OH⁻, H₂O

ОН

via

Problème 17.2 (S)

Problème 17.3 (S)

Problème 17.4 (S)

Problème 17.5 (S)

Réactions des énols et des énolates

3) Réactions d'alkylation des énolates

Électrophiles : halogénures d'alkyles primaires et secondaires (S_N2)

Nucléophiles : énolates (énols pas assez nucléophiles)

Les énolates doivent être préformés quantitativement avec une base forte.

Exemples

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 $FK_a = 19$
 $FK_a = 15,7$

NaOH ne sera donc pas utilisé dans une réaction d'alkylation (NaOH n'est pas une base assez forte pour générer l'énolate quantitativement). NaOH peut en outre réagir avec l'halogénure d'alkyle!

Solution

$$H_3C$$
 CH_3
 CH_3

Formation régiosélective des énolates

énolate cinétique

- énolate le moins stable (double liaison la moins substituée)
- énolate formé en arrachant le proton le moins encombré (se forme généralement plus rapidement)

$$H_3C$$
 H_3C
 H_3C
 H_3C

base typique: base forte dans solvant aprotique (LDA/THF)

CHM-2000

énolate thermodynamique

- énolate le plus stable (double liaison la plus substituée)
- énolate formé en arrachant le proton le plus encombré

base typique: base faible dans solvant protique (MeONa/MeOH)

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

énolate cinétique

- l'hydrogène arraché est le moins encombré stériquement
- l'énolate cinétique sera formé majoritairement quand la réaction est "cinétiquement controlée"

énolate thermodynamique

- l'hydrogène arraché est le plus encombré stériquement
- l'énolate thermodynamique sera formé majoritairement quand les conditions équilibrantes conduisent à l'énolate le plus substitué

Exemples

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

LDA, 0°C (conditions cinétiques)

99 %

1 %

Et₃N (conditions thermodynamiques)

22 %

78 %

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

Exemples