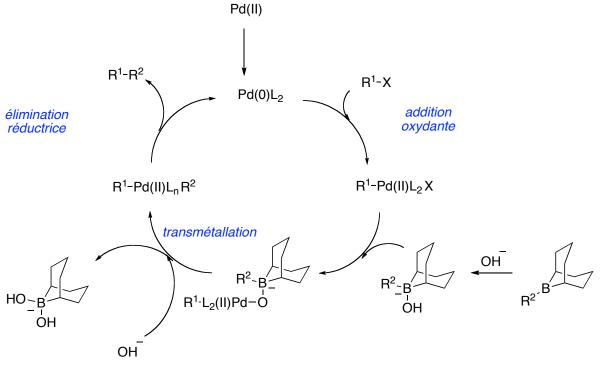
Réaction de Suzuki-Miyaura

$$R^{1}-X + R^{2}-B = R^{3}$$
 $R^{1}-R^{2}$ $R^{1}-R^{2}$

R¹: vinyl, aryl R²: vinyl, aryl, alkyl R³: OH, OR, alkyl X: I, OTf, Br, Cl


> Miyaura, Suzuki 95CR2457 Suzuki 99JOM147

Heck, 1968 : sp²-sp² Stille, 1985 : sp²-sp² (Sn) Suzuki, 1981 : sp²-sp² (B) sp²-sp³ (B)

Exemples

· Cycle catalytique

Mécanisme via un complexe "ate"

Danishefsky 2001ACIEE4544

OH⁻ : 1^{er} équivalent pour activer borane 2^{ème} équivalent pour capturer l'espèce de bore

99JOC6797 99JACS9550

Caractéristiques générales

· Nature de la base

KOH, NaOH, Ba(OH)₂, Na₂CO₃, Cs₂CO₃, NaOEt, Et₃N

Récemment : TIOH, Tl₂CO₃ (nombreuses réactions à 20°C, formation de sels insolubles de thallium,

toxicité donc pas recommandé sur grande échelle)

- · Systèmes de solvants : organiques, biphasiques, aqueux
- · Avantages de la réaction de Suzuki :
 - Nombreux organoboranes disponibles commercialement (en particulier acides boroniques et esters boroniques)
 - Stabilité des acides boroniques à : chaleur, air et humidité
 - Grande tolérance de groupes fonctionnels : CO₂R, CN, CHO, NH₂, NO₂
 - Conditions réactionnelles douces : conditions anhydres pas nécessaires
 - Toxicité peu élevée
 - Séparation facile des sous-produits inorganiques du bore
- Réactivités relatives des groupes partants :

$$l^- > OTf^- > Br^- > Cl^-$$

I⁻, OTf⁻ et Br⁻ les plus utilisés

- Intérêt des chlorés sur le plan industriel

$$(HO)_{2}B \longrightarrow (1,5 \text{ équiv.}) \text{ COCH}_{3}$$

$$Pd(OAc)_{2} \text{ (1 mol \%)}$$

$$P(tBu)_{2} \longrightarrow (2 \text{ mol \%})$$

$$KF \text{ (3 équiv.), THF}$$

$$23^{\circ}C, 2 \text{ h}$$

$$91 \%$$

$$Buchwald 99ACIEE2413$$

- Utilisation des diazoniums

PhOC
$$N_2BF_4$$
 + BF_3K $PhOC$ $O(OAc)_2$ (5 mol %) $O(OAc)_2$ (5 mol %)

souvent à 20°C, sans base et sans ligands!

98TL5045

96BCSF1095 97JOC3405

• Organotrifluoroborates : bons partenaires pour la réaction de Suzuki

· Préparation des réactifs

$$R \longrightarrow BX_2$$

via :
$$\stackrel{-}{\bigcirc}$$
 $\stackrel{-}{\bigcirc}$ $\stackrel{-}{\bigcirc}$ $\stackrel{-}{\bigcirc}$ $\stackrel{-}{\bigcirc}$ $\stackrel{-}{\bigcirc}$ $\stackrel{-}{\bigcirc}$ $\stackrel{-}{\bigcirc}$

Brown 83OM1316

catéchol-borane

Brown 72JACS4370

$$R = X$$

$$h = X$$

$$hydroboration$$

$$X = Hal$$

$$X = Hal$$

$$A = X$$

disiamyl-borane H-B $B(Sia)_2$ Pr Pr

$$nPr$$
—Br $B(Sia)_2$
 nPr
 $B(Sia)_2$
 nPr
 $B(Sia)_2$
 nPr
 nPr
 nPr
 nPr

Alk-BR₂

$$R \longrightarrow H-B \longrightarrow R \longrightarrow R$$

$$\frac{1) \text{ } t\text{BuLi}}{2) \text{ 9-BBN-OMe}}$$

M = MgBr, Li

- -> Transfert de groupes alkyl I beaucoup plus rapide que alkyl II -> Transfert de groupe sélectivement à l'étape de transmétallation

- Espèce organométallique
 - Beaucoup d'acides arylboroniques disponibles commercialement
 - Certaines réactions sont possibles en "un seul pot" : espèce organométallique formée in situ

- Version catalytique

Fürstner 95T11165