- · Stéréochimie conservée au niveau des doubles liaisons
- Catalyseurs courants : Pd(PPh₃)₄ et PdCl₂(dppf)

angle plus grand -> él. réd. favorisée

· Comparaison Stille/Suzuki : rendements souvent comparables

OMen
$$TfO$$
 CH_3 $Pd(PPh_3)_4$ (4 mol %) Na_2CO_3 $Dioxane, reflux, 1 h $OfBu$ $OfBu$$

Suzuki = méthode préférée car R_3SnX plus chers et plus toxiques

· Sélectivité B vs. Sn

-> couplage avec l'organoborane, pas avec l'organostannane

• Formation de liaison Csp²-Csp³

• Formation de liaison Csp³-Csp³ (grand défi synthétique !)

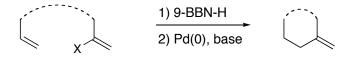
Suzuki, Miyaura 92CL691

avec PPh_3 ou $P(tBu)_3$: rdt < 2 %

• Organotrifluoroborates : bons partenaires pour la réaction de Suzuki

$$C_8H_{17}$$
 + $HBBr_2$ - SMe_2 H_2O C_8H_{17} H_2O , Et_2O Et_2O Et_3O Et_3O

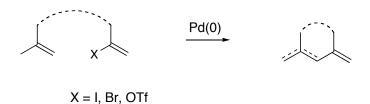
B(OH)₂ difficile à purifier (polymérisable)


• Réaction de Suzuki avec alkylboranes - Régiosélectivité de fermeture de cycle

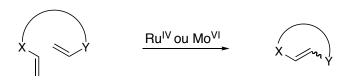
oléfine Z

Danishefsky 2001ACIEE4544

- · Intérêt de la réaction de Suzuki
 - Réaction de Suzuki-Hiyama sp³-sp²


 $X = I, Br, CI, OTf, OP(O)OR_2$

- Réaction de Suzuki-Hiyama sp²-sp² ou réaction de Stille


$$X$$
 Y $Pd(0)$

 $X = BR_2$, SnR_3 ; Y = I, Br, CI, OTf

- Réaction de Heck

- Métathèse d'oléfines

