Chimie organique verte – Introduction générale

Thierry Ollevier

Professeur titulaire

Département de chimie Faculté des sciences et de génie

CHM-7013

Chimie - Définitions

- Chimie (n.c., du grec khêmeia « magie noire »):
 Science de la constitution des divers corps, de
 leurs transformations et de leurs propriétés
 Chimiste (n.c., 1548): personne qui s'occupe
 de chimie, pratique et étudie la chimie
- Chimie verte ?
 Chimie verte ≠ chimie du végétal

Les couleurs de la chimie...

Seveso (Italie, 1976)

Saint-Basile-le-Grand (Québec, 1988)

Bhopal (Inde, 1984)

N^{_C}_O

Isocyanate de méthyle

Naufrages Exxon Valdez (USA, 1989)
– Erika (France, 1999)

Pétrole brut

... « Chimie noire »?

- Prise de conscience. Mauvaise image de l'industrie.
- Pollutions. Accidents chimiques.
- Traitement de la pollution.
- Contrôle de la pollution industrielle :
 - réglementation plus stricte,
 - rôle de la chimie (comprendre la dangerosité du point de vue moléculaire),
 - prévention.

Bienfaits de la chimie

- Augmentation de la qualité de vie
- Augmentation de la durée de vie de l'homme (traitement des maladies, diminution des décès des jeunes enfants ou des personnes

agées, ...): « chimie rose » *

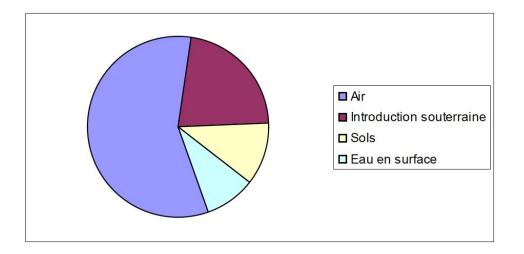
• Avancées technologiques de la vie quotidienne

* Professeur G. Ourisson, Université de Strasbourg, octobre 2010

http://www.canal-u.tv/video/universite_de_tous_les_savoirs/chimie_polluante_chimie_non_polluante_et_chimie_depolluante.1144

Domaines d'application de la chimie

- Pharmaceutique
 - Médicaments
- Électronique
 - Composants, Affichages (polymères conducteurs)
- Cosmétique
- Domestique
 - Produits de nettoyage, Parfums, Textiles
- Agriculture
- Automobile
 - Peintures, Polymères, Vernis
- Aérospatial

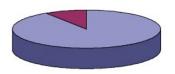

Industrie chimique en quelques chiffres

- 7 % du Produit intérieur brut mondial
- 9 % du commerce mondial
- Croissance estimée: + 85 % (de 1995 à 2020)
- Record de croissance (sur les 50 dernières années)
 - en volume : plastiques d'origine pétrochimique
 - en valeur : produits pharmaceutiques

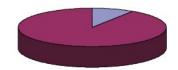
Répartition des émissions

• Répartition des émissions de produits chimiques toxiques rejetés dans l'environnement :

Diversité des productions


Raffinerie


Chimie lourde


Chimie fine

Chimie pharmaceutique

Production mondiale annuelle (T/an) (produits/déchets)

1-100 M (produits) 0.1 – 10 M (déchets)

10-1000 (produits) 1000 à 0.1 M (déchets)

Facteur E < 0,1 (déchets/produits)

< 1 - 5

5 - 50

25 - 100

Données du problème

- Grande variété de processus chimiques
- Gestion des déchets
- Normes environnementales
- Préoccupations liés à la sécurité
- Raréfaction des matières premières pétrochimiques

Objectifs

• Objectif : Développement durable

Permettre de satisfaire les besoins de la génération présente sans compromettre les besoins des générations futures

• Moyen : Chimie verte

Usages

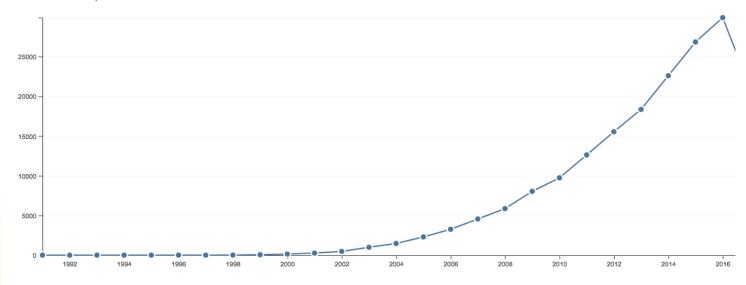
- Chimie verte :
 - employé pour la première fois dans un article en 1990 (Cathcart)
 - officialisé en 1991 (Paul T. Anastas, Environmental Protection Agency, USA)
- Autres noms :
 - Chimie propre
 - Chimie environnementale
 - Chimie bénine
 - Chimie durable

Définition

• « Chimie verte »

Conception de produits et de processus chimiques qui réduisent ou éliminent l'usage et la formation de substances toxiques

Chimie dans une optique de développement durable


 Définition plus détaillée avec les 12 principes de la chimie verte

Anastas, P. T.; Warner, J. C. *Green Chemistry: Theory and Practice*. New York, Oxford University Press (1998)

Publications

Sum of Times Cited per Year

«Green Chemistry» (topic: article), Web of Knowledge: Web of Science

14

Historique

- 1995 : « Presidential Green Chemistry Challenge Award » créé par le Président Bill Clinton
- 1997 : « Green Chemistry Institute »
- 1998: proposition des 12 principes par Paul T. Anastas et John C. Warner (mise en pratique des propositions du « Green Chemistry Institute »)
- 2003 : ajout des 12 principes de « Green Engineering »

Approches

- Approche radicalement nouvelle des problèmes
 - Avant : « chimie traditionnelle »

• Maintenant : chimie verte

Analyse à la source Développer des processus sans danger

Analyse des circonstances

Analyse du système intrinsèque

Nouveau mode de pensée

Chimie Analyse des circonstances

- Utilisation des produits
- Exposition
- Manipulation
- Traitements
- Protection
- Recyclage
- Coût
- Gestion des déchets produits pour réguler exposition

Chimie verte Analyse du système intrinsèque

- Conception (« design ») moléculaire
- Capacité réduite à présenter du danger
- Sécurité du produit en cas d'accident
- Possibilités de profits augmentées
- L'objectif est de ne pas créer le danger

Notion de risque

• Définition :

Risque = Danger \mathbf{x} Exposition

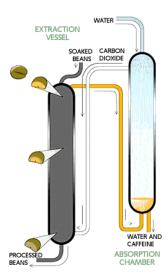

• Objectif de la *chimie verte* :

Réduction du danger

 Danger considéré comme une faille dans la conception

Enjeux et compromis

Source: http://www.biojest.fr



Applications : « Décaféination »

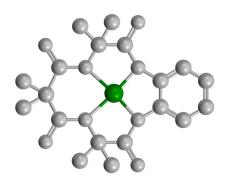
Avec dichlorométhane (CH₂Cl₂) (toxique par inhalation)

Avec dioxyde de carbone (CO₂)

Applications: Plastiques bio-inspirés

Acide polylactique (PLA)

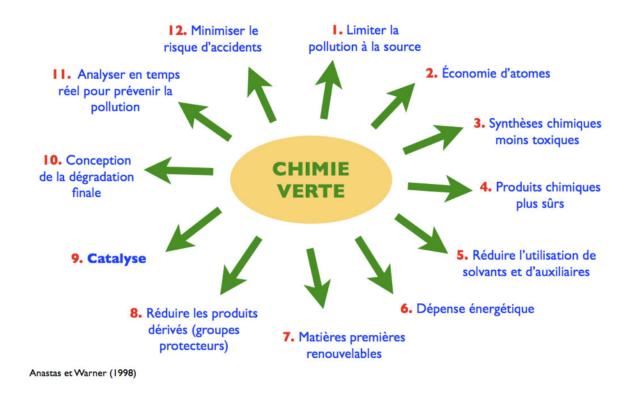
- Applications :
 - Bouteilles
 - Fibres
 - Boîtiers de disques



Applications: Oxydants industriels

• Dérivé du fer :

- Usages:
 - Textiles : blanchissage, décoloration d'effluents
 - Pâtes et papiers : blanchissage
 - Épuration des eaux : destruction (oxydation) des composés organiques
 - Raffinage du pétrole : oxydation des contaminants soufrés



Applications: Talampanol

- Prix du Presidential Green Chemistry Challenge
- Médicament pour le traitement de l'épilepsie et de maladies neuro-dégénératives
- Nouveau procédé :
 - 7 étapes de synthèse avec 3 produits isolés
 - Réduction de 34 000 litres de solvants et de 300 kg de déchets de chrome par 100 kg de composé
 - Rendement augmenté de 16 % à 55 %
 - Bio-réduction d'une cétone en alcool chiral avec Zygosaccaromyces rouxii (96 %)

12 principes

Source: http://www.ccvc.umontreal.ca

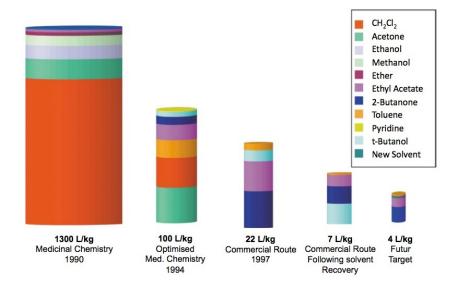
Synthèse de l'ibuprofène

- Exemple représentatif de la chimie verte
- Ibuprofène = analgésique, constituant principal de nombreux produits commerciaux
- Historiquement, <u>deux voies</u> de synthèse chimique ont été utilisées pour fabriquer industriellement l'ibuprofène.
- Production industrielle annuelle d'environ 13 000 tonnes d'ibuprofène.
- Les atomes retrouvés dans les déchets sont en rouge.
- Les atomes conservés dans l'ibuprofène sont en vert.

Ibuprofène

Synthèse de l'ibuprofène

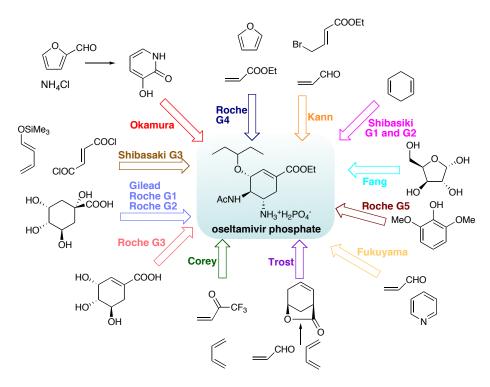
- Production industrielle annuelle d'environ
 13 000 tonnes d'ibuprofène.
- Pour le procédé Boots, cela implique plus de 20 000 tonnes de déchets, dont on doit se débarrasser!
- Par le procédé BHC, on crée environ 4 000 tonnes d'acide acétique, qui est recyclé (nombreuses applications commerciales).


Ibuprofène – Conclusions

- Le procédé BHC respecte plus les principes de la chimie verte, car beaucoup moins de déchets sont produits.
- Le procédé BHC est économiquement plus viable, car moins d'étapes sont requises (procédé plus rapide).
- Dans une optique d'économie d'atomes, le procédé Boots a été délaissé au profit du procédé BHC, plus vert.

Exemple : synthèse du sildenafil citrate

Bilan de solvants


- √ Toluène recyclé
- ✓ Plusieurs étapes dans l'acétate d'éthyle (solvant vert)
- √ Solvants chlorés supprimés
- √ Solvants très volatiles supprimés

The development of an environmentally benign synthesis of sildenafil citrate (Viagra) and its assessment by Green Chemistry metrics » Dunn, P. J.; Galvin, S.; Hettenbach, K., Green Chem. 2004, 6, 43–48

Tamiflu™ – Voies de synthèse

Synthèse du Tamiflu™

« Global Green Chemistry Metrics Analysis Algorithm and Spreadsheets: Evaluation of the Material Efficiency Performances of Synthesis Plans for Oseltamivir Phosphate (Tamiflu) as a Test Case », Andraos, J., Org. Proc. Res. Dev. **2009**, *13*, 161–185

Synthèses – Performances comparées

plan	E-kernel	E-excess	E-auxiliaries	E-total	total mass of waste (kg) ^a
Roche (shikimic acid route - G3)	7.7	24.6	198.6	230.9	94.7
Roche (quinic acid route - G2)	10.1	30.0	267.7	307.9	126.2
Roche (quinic acid route - G1)	30.6	71.1	755.5	857.2	351.4
Roche (desymmetrization route - G5)	17.8	68.4	847.4	933.6	382.8
Gilead	36.7	91.5	808.6	936.7	384.0
Fang	31.0	274.8	>2275.1	> 2580.9	>1058
Trost (short) ^b	16.8	141.5	>2527.1	> 2685.4	>1101
Trost $(long)^b$	23.8	144.5	> 2690.5	>2858.7	>1172
Corey ^c	17.5	208.8	> 3056.5	>3282.9	>1346
Fukuyama ^d	40.0	163.4	>3843.0	>4046.5	>1659
Roche (Diels-Alder route - G4)	66.8	181.2	>4855.6	>5103.5	>2092
Kann	115.5	285.9	> 13238.0	> 13639.5	>5592
Shibasaki G1 ^e	366.6	3772.8	> 12055.0	> 16194.4	>6640
Shibasaki G2 ^e	116.8	1279.9	> 18817.8	> 20214.5	>8288
Okamura-Corey	78.0	439.8	>21926	> 22444	>9202
Shibasaki G3	179.5	1554.1	> 24805.8	> 26539.4	>10881

Basé sur 1 mole de phosphate de oseltamivir obtenu (0,410 kg)

Facteur environnemental E = 94.7/0,410

Acteurs-clés

Chimie verte et développement durable

