Orbitales moléculaires des diatomiques

1 Série 1

Molécules diatomiques homonucléaires

1. La configuration électronique de N_2 (14 électrons) est

$$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (1\pi_u)^4 (3\sigma_g)^2$$

Dans cette configuration, les 3 orbitales liantes du type σ et les 2 orbitales liantes du type π sont doublement occupées; le nombre d'électron dans des orbitales liantes est donc

$$n_{liante} = 10.$$

On compte dans cette configuration 2 orbitales antiliantes doublement occupées ($1\sigma_u$ et $2\sigma_u$), ce qui donne

$$n_{antiliante} = 4.$$

L'ordre de liaison est donc

$$n_{liaison} = \frac{10-4}{2} = 3$$

et l'énergie de liaison de N_2 est particulièrement élevée. Même les ions N_2^- et N_2^{2-} sont stables, car

- Avec un électron de plus, qui ira nécessairement dans une orbitale $1\pi_g$ antiliante, il reste, dans N_2^- , un excès d'électrons dans des orbitales liantes, et N_2^- a un ordre de liaison de 2, 5.
- Avec deux électron de plus, N_2^{2-} a un ordre de liaison de 2.
- 2. Écrivons la configuration électronique des quatre espèces H_2^+ , H_2 , He_2^+ et He_2 , et calculons l'ordre de liaison dans ces quatre cas:

espèce	configuration	n_{liant}	$n_{antiliant}$	ordre de liaison
H_2^+	$(1\sigma_g)^1$	1	0	0,5
H_2	$(1\sigma_g)^2$	2	0	1
He_2^+	$(1\sigma_g)^2(1\sigma_u)^1$	2	1	0,5
He_2	$(1\sigma_g)^2(1\sigma_u)^2$	2	2	0

En ordre de stabilité décroissante, les quatres molécules se classent donc comme suit:

$$H_2 > H_2^+ \simeq He_2^+ > He_2$$

3. Écrivons la configuration électronique des trois espèces O_2 , O_2^+ et O_2^{2+} , et calculons l'ordre de liaison (*n*)dans ces trois cas:

espèce	configuration	n_{liant}	$n_{antiliant}$	n
O_2	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (3\sigma_g)^2 (1\pi_u)^4 (1\pi_g)^2$	10	6	2
O_2^+	$(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(3\sigma_g)^2(1\pi_u)^4(1\pi_g)$	10	5	2, 5
O_2^{2+}	$(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(3\sigma_g)^2(1\pi_u)^4$	10	4	3
~				

On doit donc avoir

$$R_{eq}(O_2^{2+}) < R_{eq}(O_2^{+}) < R_{eq}(O_2)$$

4. Le fait que B_2 (10 électrons) est paramagnétique indique que

$$\epsilon_{1\pi_u} < \epsilon_{3\sigma_g}$$

et que la configuration électronique de B_2 est

$$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (1\pi_u)^2$$

Les deux derniers électrons se plaçant l'un dans l'orbitale $1\pi_{u,x}$, l'autre dans l'orbitale $1\pi_{u,y}$ de sorte à pouvoir maintenir leur spin parallèle.

5. Rappelons la configuration électronique des deux espèces Be_2 et C_2 , et leur ordre de liaison n:

espèce	configuration	n_{liant}	$n_{antiliant}$	n
Be_2	$(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^4$	4	4	0
C_2	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (1\pi_u)^4$	8	4	2

Ce serait C_2 qui aurait l'énergie de dissociation la plus élevée.

6. La configuration de l'état fondamental de C_2^{2-} est

$$(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(1\pi_u)^4(3\sigma_g)^2$$

et son ordre de liaison est de

$$n_{liaison} = 3.$$

Comparé à C_2 , cet anion, qui est isoélectronique à N_2 , est plus stable et est caractérisé par une liaison plus forte (liaison triple).

2 Série 2

Molécules diatomiques hétéronucléaires AB faiblement polaires

1. Le diagramme de corrélation pour *CO*, *CN* et *BN* est donné par la même figure 1 suivante, à condition de remplacer *B* par l'élément le moins lourd, et *A* par celui le plus lourd dans la diatomique concernée.

Figure 1: Diagramme de corrélation typique montrant la formation des premières OM d'une molécule diatomique hotéronucléaire AB faiblement polaire à partir des OA.

- 2. En employant le diagramme de niveaux d'énergie de la figure 1, on obtient sans difficulté la configuration électronique et ordre de liaison de
 - (a) CO, (14 électrons)

$$(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(2\sigma^*)^2(3\sigma)^2(1\pi)^4$$

$$n_{liant} = 10, n_{antiliant} = 4, n_{liaison} = 3$$

- (b) NO^+ , (14 électrons), isoélectronique à CO.
- (c) CN^+ , (12 électrons)

$$(1\sigma)^2 (1\sigma^*)^2 (2\sigma)^2 (2\sigma^*)^2 (3\sigma)^2 (1\pi)^2$$

 $n_{liant} = 8, n_{antiliant} = 4, n_{liaison} = 2$

- (d) CN^{-} , (14 électrons), isoélectronique à CO.
- (e) BN, (12 électrons), isoélectronique à CN^+ .
- 3. Écrivons d'abord la configuration électronique de N_2 , NO, O_2, C_2, F_2 et CN:

espèce	configuration	n_{liant}	$n_{antiliant}$	n
N_2	$(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(1\pi_u)^4(3\sigma_g)^2$	10	4	3
NO	$(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(2\sigma^*)^2(3\sigma)^2(1\pi)^4(1\pi^*)^1$	10	5	2, 5
O_2	$(1\sigma_g)^2 (1\sigma_u)^2 (2\sigma_g)^2 (2\sigma_u)^2 (3\sigma_g)^2 (1\pi_u)^4 (1\pi_g)^2$	10	6	2
C_2	$(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(1\pi_u)^4$	8	4	2
F_2	$(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(3\sigma_g)^2(1\pi_u)^4(1\pi_g)^4$	10	8	1
CN	$(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(2\sigma^*)^2(3\sigma)^2(1\pi)^3$	9	4	2, 5

(a) En ajoutant un électron, on o	obtient
-----------------------------------	---------

		1	1	1
espece	configuration	n_{liant}	$n_{antiliant}$	n
N_2^-	$[N_2](1\pi_g)^1$	10	5	2, 5
NO^{-}	$[NO](1\pi^{*})^{1}$	10	6	2
O_2^-	$[O_2](1\pi_g)^1$	10	7	1, 5
C_2^-	$[C_2](3\sigma_g)^1$	9	4	2, 5
F_2^-	$[F_2](3\sigma_u)^1$	10	9	0,5
CN^-	$[CN](1\pi)^1$	10	4	3

On voit donc que seules C_2 et CN sont stabilisées par l'addition d'un électron, qui irait dans une orbitale liante. Dans les autres cas, l'électron ajouté irait dans une orbitale antiliante, et $n_{antiliant}$ augmente.

(b) Par le même raisonnement, on voit que le retrait d'un électron fait diminuer n_{liant} dans le cas de C_2 et CN, causant une diminution de l'ordre de liaison dans ces cas, tandis que la diminution de $n_{antiliant}$ dans les autres cas correspond à une stabilisation de N_2 , NO, O_2 , F_2 dans l'ionisation de ces espèces en cations N_2^+ , NO^+ , O_2^+ , F_2^+ . 4. On a

• pour CN^+ , CN, CN^- :

espèce	configuration	n_{liant}	$n_{antiliant}$	n
CN^+	$(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(2\sigma^*)^2(3\sigma)^2(1\pi)^2$	8	4	2
CN	$(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(2\sigma^*)^2(3\sigma)^2(1\pi)^3$	9	4	2, 5
CN^-	$(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(2\sigma^*)^2(3\sigma)^2(1\pi)^4$	10	4	3
0	lana			-

On aura donc

$$R_{eq}(CN^{-}) < R_{eq}(CN) < R_{eq}(CN^{+})$$

Note: on aurait pu utiliser directement les résultats du problème précédent et en déduire tout de suite cette conclusion.

 dans le cas de NO⁺, NO, NO⁻, on aura, selon les résultats du problème précédent (NO est stabilisé dans le retrait d'un électron et déstabilisé dans l'ajout d'un électron):

$$R_{eq}(NO^+) < R_{eq}(NO) < R_{eq}(NO^-)$$

3 Série 3

Molécules diatomiques hétéronucléaires AB fortement polaires

3.1 Problème 1

1. Principe: comme chacune des orbitales atomiques $2s_A$, $2p_A$ (A = Li, F) est supposée hydrogénoïde, on a

$$\epsilon_{orbitale}/Ry = -\frac{Z_{eff}^2}{2^2}$$

Une fois la valeur respective de Z_{eff} obtenue, on calculera le rayon moyen de ces OA à l'aide de la formule

$$< r >_{nl} = \frac{a_0}{2Z_{eff}} [3n^2 - l(l+1)]$$

On trouve ainsi

	ϵ_{orb}	Z_{eff}	$< r > /a_0$
$2s_F$	-2,25 Ry	3,00	2,00
$2s_{Li}$	-0,36 Ry	1,20	5,00
$2p_F$	-1,0 Ry	2,00	2,50
$2p_{Li}$	-0,25 Ry	1,00	5,00

2. Les rayons moyens ainsi calculés nous donne une idée de la grandeur relative des intégrales de recouvrement S_{ab}, où 'a' représente une OA de Li, 'b' une OA de F. Le principe est le suivant: Pour une valeur de R fixée, plus les deux OA sont volumineuses (diffuses), plus elles se recouvrent bien. On prévoit ainsi

$$|S_{2s_{Li},2p_F}| \simeq |S_{2p_{Li},2p_F}| \geq |S_{2s_{Li},2s_F}| \simeq |S_{2p_{Li},2s_F}|$$

L'ordre donné dans l'énoncé

$$|S_{2s_{Li},2s_F}| \geq |S_{2s_{Li},2p_F}| > |S_{2p_{Li},2s_F}| \geq |S_{2p_{Li},2p_F}|$$

est différent de celui suggéré par les $\langle r \rangle_{nl}$ estimés ci-haut, qui prévoit que $2s_{Li}$ ou $2p_{Li}$ recouvre mieux $2p_F$ que $2s_F$. L'ordre de l'énoncé ne serait raisonnable que dans la mesure où les signes \geq et \rangle dans ceci sont remplacés par \simeq , en se reférant à la valeur assez proche de $\langle r \rangle_{2s_F}$ et de $\langle r \rangle_{2p_F}$.

- 3. Un diagramme de corrélation plausible, figure 2, pour la formation des dix premières orbitales moléculaires ψ_i , i = 1-10, de LiF à partir des OA peutêtre construit en s'appuyant sur les considérations qualitatives suivantes:
 - Les orbitales $1s_F$, $1s_{Li}$ se transportent chacune séparément en une OM non-liante (orbitales de coeur).

$$\psi_1 \simeq 1 s_F, \quad \psi_2 \simeq 1 s_{Li}$$

• L'orbitale $2s_F$ se transporte en une orbitale pratiquement non-liante, du type orbitale de coeur 2s de F. En dépit du recouvrement non nul que $2s_F$ présenterait avec les orbitales 2s, 2p de $Li, 2s_F$ serait trop profonde en énergie pour se mélanger avec ces OA de Li.

$$\psi_3 \simeq 2s_F$$

Figure 2: Diagramme de corrélation montrant la formation des premières OM de LiF à partir des OA de Li et de F.

 Les orbitales 2s et 2pz de Li étant assez proches, elles vont contribuer de façon appréciable aux combinaisons linéaires (du type σ) avec les orbitales 2pz de F. L'orbitale σ liante serait dominée par 2pz,F,

$$\psi_4 \simeq 2p_{z,F} + c(2p_{z,Li} + 2s_{Li})$$

l'antiliante par une combinaison presque équitable de $2s_{Li}$ et de $2p_{Li}$.

$$\psi_{10} \simeq (2p_{z,Li} + 2s_{Li}) - c2p_{z,F}$$

La combinaison linéaire des 3 OAs $2s_{Li}$, $2p_{Li}$ et $2p_{z,F}$ donne aussi une OM non-liante, composée essentiellement de $2s_{Li}$ et de $2p_{z,Li}$ seules.

$$\psi_7 \simeq (2p_{z,Li} + 2s_{Li})$$

• les orbitales liantes du type π sont dominées par les orbitales $2p_{x(y),F}$,

$$\psi_5 \simeq 2p_{x,F} + c2p_{x,Li}, \quad \psi_6 \simeq 2p_{y,F} + c2p_{y,Li}$$

celles qui sont antiliantes par les orbitales $2p_{z(y),Li}$

$$\psi_8 \simeq 2p_{x,Li} - c2p_{x,F}, \quad \psi_9 \simeq 2p_{y,Li} - c2p_{y,F}$$

3.2 Problème 2

1. En utilisant les énergies des OA de F et en supposant que ces OA sont

hydrogénoïdes, on peut tirer le facteur d'écran σ ressentie par un électron dans la sous-couche 2s ou 2p de F ou de O^- , et de là, on peut calculer l'énergie de ces OA dans O^- . On utilise, pour celà, la relation approchée

$$\epsilon_{nl} \simeq -\frac{(Z-\sigma)^2}{n^2} Ry,\tag{1}$$

avec Z = 9 pour trouver σ , et avec Z = 8 pour calculer l'énergie des OA dans O^- . On trouve

	2s	2p
σ	5,65	6,63
$\epsilon_{nl}(O)$	-1,38 Ry	-0,47 Ry

Ta	bl	e	2	•

2. Selon le calcul précédent, en passant de F à O^- , les 2 niveaux 2s et 2p sont poussés vers le haut. Dans le cas de X = F, le niveau $2s_X$ était trop profond par rapport au niveau $1s_H$ pour donner des mélanges appréciables de l'OA $2s_X$ avec $1s_H$. En passant de F à O^- , ce niveau se trouve déplacé vers une énergie comparable à celle du niveau 2p dans F. Ce dernier niveau se trouve déplacé (dans O^-) jusqu'à -0, 5 Ry. Dans le cas $X = O^-$, les 2 niveaux $2s_X$ et $2p_X$ sont donc à une distance égale du niveau $1s_H$. On doit donc s'attendre à ce que les orbitales 2s et $2p_z$ de $X = O^-$ participent de

façon appréciable à la formation d'OM liantes et antiliantes du type σ dans OH^- . Au lieu des deux combinaisons linéaires 'binaires'

$$1s_H \pm 2p_{z,X}$$

qui décrivent qualitativement bien les OM de HF (X = F), on aurait, dans le cas de OH^- , trois combinaisons linéaires du type

$$c_1(1s_H) + c_2(2p_{z,O}) + c_3(2s_O)$$

dont

- celle de plus basse énergie serait dominée par 2s_O (2s_O + t2p_{z,O}, t < 1) et est liante. Elle correspond à l'OM σ liante dans HF
- celle de plus haute énergie est antiliante et s'apparenterait à l'OM σ antiliante de HF, c.à d. qu'elle est essentiellement formée par LCAO de $2p_{z,O}$ avec $1s_H$. La contribution de $2s_O$, mineure soit-elle, serait plus importante que celle de $2s_F$ dans la même OM de HF.
- La troisième OM obtenue de cette façon doit être non-liante, et consistera en une combinaison pure des orbitales 2s et 2p de l'oxygène, du 2s_O + t2p_{z,O}, t < 1). Elle est à être comparée à l'orbitale non-liante 2s_F du cas de HF.

Dans le diagramme de corrélation, on aura donc, selon cette analyse, une inversion des deux niveaux correspondant à l'orbitale σ non-liante et la première orbitale liante de cette symétrie. La composition LCAO détaillée des OM change aussi, par le rôle actif que joue maintenant l'orbitale 2s de l'élément électronégatif $X(=O^{-})$.

HF F

H

 ψ_2 _ _ _ _ 2s

 ψ_1 _____1s

 ψ_1 _____1s